
An Algorithm for Approximate Closest-point Queries

Kenneth L. Clarkson

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

e-nrail: clarkson@research. att. corn

Abstract

This paper gives an algorithm for approximately solv-

ing the post ofice problem: given n points (called

sites) in d dimensions, build a data structure so that,

given a query point q, a closest site to q can be found

quickly. The algorithm is also given a relative error

bound e, and depends on a ratio p, which is no more

than the ratio of the distance between the farthest

pair of sites to the distance between the closest pair
of sites. The algorithm builds a data structure of

size 0(nq)O(l/t)(d-ljt2 in time 0(n2q)O(l/c)(d-lJ.

Here q = log(p/~). With this data structure, a site is

returned whose distance to a query point q is within

1 + e of the distance of the closest site. A query needs

O(log n)O(l/c)(d-lJ12 time, with high probability.

1 Introduction

The post-office problem is the following: given a set

S of n points (called sites) in d dimensions, build

a data structure so that given a query point q, the

closest site to q can be found quickly. Many data

structures have been proposed for this problem; their

query times generally are faster than the trivial O(n),

and often are O(log n), as n ~ co. The dependence

of the query time on the dimension d is generally

very steep for the nontrivial algorithms, at least 2n(d).

Even heuristic algorithms that are fast in practice,

such as bucketing and kd-trees, also have this expo-

nential dependence. This is unfortunate, since many

Permission to cop w“thout fee all or part of this material is
igranted provided t at the copies are not made or distributed for

direot commercial advanta$e, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Cornputitlg
Machinery. To copy otherwise, or to republish, requires a fee
andlor specific permission.

10th Computational Geometry 94-6/94 Stony Brook, NY, USA
@ 1994 ACM 0-89791 -848-4/8410006..$&5O

of the most interesting potential applications have d

at least 10, and often much greater. Thus the promise

of a query time of O(log n) is crushed by the “curse

of dimensionality.”

This paper gives a modest but significant improve-

ment in the dimension dependence of one recent algo-

rithm, that of Arya and Mount. [AM93] They attack

the problem of approximate solution to the post-office

problem; their procedure returns an c-closest site, one
whose distance to the query point q is within 1 + c of

closest. Here c > 0 is input when their data structure

is built. The algorithm given here takes their ap-

proach to what is arguably its logical conclusion, re-

duces the query time from O(log3 n) to ~(log n),l and

reduces the “constant” factors for the dimension from

0(1/~)~ to about 0(1/c)(~-l)i2. (The latter reduc-

tion applies to the storage and query-time bounds.)

The new algorithm has an additional factor in storage

and preprocessing time of log p, where p is bounded

above by the ratio of the distance between the sites

farthest apart to the distance of the sites closest to-

gether. (In fact p is roughly the maximum, over all

sites s, of the ratio of the distance to s to its farthest

Delaunay neighbor, to the distance ofs to its closest

Delaunay neighbor. Hence log p is negligible relative

to other factors.)

Arya et al. have more recently described a dif-

ferent approximation algorithm, based on quadtree

techniques, that has better storage and preprocess-

ing bounds than those given here, but with a query

time that has a Cl(l/c)d dependence. [AMN+ 94]

The new algorithm uses a technique previously

used for polytope approximation [Cla93] in order to

approximate a certain Voronoi region for each site by

a simpler Voronoi region for the site. The approxi-

mation problem is solved using randomization. The

algorithm also builds a data structure similar to a

skip list, and uses randomization for that. [Pug90]

1Here d(g(n)) means O(g(n)) with probability at least 1 –
l/n2.

160

The following section first describes the general ap-

proach, and then develops that approach in the fol-

lowing subsections.

2 The algorithm

Following Arya and Mount, the general idea is to find,

for each site s, a list of sites N, with the following

property: ifs is not the closest site to the query point

q, then there is a site in N, closer to q than s. With

this property, a simple search procedure will lead to

the closest site: pick any site s; if a site t E N, is

closer to q, assign t to s and repeat; otherwise return

s aa closest.

This approach is not so interesting just yet. The

list N, must be the set of Delaunay neighbors ofs, as

the interested reader can easily show. This makes for

a space requirement of f2(n2) in the worst case, for

d >2. Also, the query time is $_I(n) in the worst case:

there is no speedup over the obvious algorithm. (For

uniformly distributed points, the query time is more

like O(nli~), so this approach is not entirely useless,

however.)

For more interesting results, make the problem eas-

ier: instead of the closest site, find an c-closest site.

(Again, such a site has a distance to the query point

that is within 1 + c of the distance of the closest site’s,

for c > O.) This is the approximate query problem

solved by Arya and Mount. They used a collection

of narrow cones to obtain their lists, in a way similar

to Yao’s use of them for finding minimum spanning

trees [Yao82]. Here the approach is to go from the de-

sired conditions on the lists to a problem similar to

polytope approximation.

The modified construction begins aa follows. For

each site s, consider a list L~ with the following prop-

erty: for any q, if there is b 6 S with

d(g, s) > (1+ c)d(q, b),

then there is b’ c L. with

d(q, s) > (1+ e’)d(q, b’),

where c’ z c/2. (Note that if 6 = O, then L, = N,.)

Using such lists, the search procedure starts at any

site s. If there is t E L, with d(q, s) > (1 + c’)d(q, t),

then assign t to s and repeat. Otherwise, return s.

With L, as defined, the returned s is c-closest. Note
that the procedure makes progress at each step: the

distance of the current site decreases by 1/(1+ d).
Consider the condition satisfied by L, in a contra-

positive way. Fixing s E S, let NC(S) be defined by

N,(S) s {q I d(q, s) s (1+ ~)d(q, b) for all b ~ S},

so that

N, I(L,) = {q I d(q, s) s (1 +c’)d(q, b) for :dl b E L,}.

The condition on L, is equivalent to ,ti,t (L,) C

N,(S). The set N,(S) is the Voronoi region of s in
a certain multiplicatively weighted Voronoi diagram.

The L, we want is a small one that such th~at NCI(L$)

is inside NC(S); the problem of finding such an L* can

be solved by techniques previously applied to poly-

tope approximation. [Cla93]

The following subsection discusses the problem of

finding L,; 32.2 bounds the size of such a list; $2.3

shows how to use the lists to obtain fast query times.

Finally, $3 makes some concluding remarks.

2.1 Finding L.

To find L., we’ll translate the problem to d + 1 di-

mensions using standard “lifting map” techniques.

If we put s at the origin, the region NC(S) is the

intersection of all regions of the form

{z I .Z2 s (l+c)2(z-b)2},

where b c S. The condition here is z2/(1 + C)2 ~ (z -

b)’, or az’ ~ 2b. z–b2, where a ~ l–1/(l+e)2 % 2c.

Now let (z, y) denote a point in Rd+l, with z E Rd

and y E R. We have

N,(S) ={zlayz 2bz-b2andy=z2}~

So for b E S, let fit,b denote the halfspace

ti,,b + {(%, y) I (Yy~ 2b. z–b2},

and PC(S) denote the polytope which is the intersec-

tion of such halfspaces,

p,(s) - n ?&,b.

bcs

Then

N,(S) = {z \ (z, y) E P,(S) and y := z’}.

Let V s {(z, y) I y z Z2}. Then for N,l(L,) c N,(S),
it is enough that

P,~(L,)nW c P,(S) nW. (1)

The problem of finding L, satisfying this con-

dition can be solved using techniques as for poly-
tope approximation [Cla93], which are very simi-

lar to techniques described long age) for linear

programming[Cla88]. The general idea is this: give

161

each site an integral weight, initially one. Take a ran-

dom subset R of S, choosing each site with probabil-

ity proportional to its weight, and making R about

the right size. Test if R satisfies (1); if so, return

it. Otherwise, we can derive from the testing of R
a subset of S that we can expect to be small, and

that must contain a site of an appropriate L,. Dou-

ble the weights of the sites in that subset. Repeat

this process until done.

Here are a few more details of the algorithm: fix

some optimal L satisfying (1), where the size c of C

is as small as possible. Assume for the moment that

c is known. (By using exponentially increasing esti-

mates of c, we lose only a small factor in the size of

the returned set, and in running time.) Give each

P c S a weight, initially equal to one. Choose a ran-
dom subset R c S of size CC’l d log c, where C’l is a

small constant, choosing a site with probability pro-

portional to its weight. For each b c S, check that
.

P,I(R) n w c ?iC,b. (2)

This is a convex programming problem, and as shown

by Adler and Shamir, it is solvable in O(n) ex-

pected time using a randomized procedure similar to

one for linear programming. [AS90] (The base case,

with 0(d2) constraints, can be solved in polynomial

time. [Vai89]) If all b c S satisfy (2), then return R as

Ls. Suppose the condition fails for some b E S. Then
there will be some vertex v of ‘PCI(R) n Wnot in ‘H,,;;

such a vertex can be returned as part of the output

of the convex programming algorithm. Find all the

halfspaces %Cl,b that do not contain v, for b E S. This

set V of halfspaces will have relatively few members,
with high probability, and will contain a member of

the optimal set C’. If the size of set V is less than

Czdn/r, then double the weights of the correspond-

ing sites. (Here C2 is another small constant.) Repeat

this procedure until a list L. is returned.

An analysis of this procedure appears

and will appear in the full paper.

2.2 The size of L,

in [Cla93],

This algorithm returns a set L, of size within
O(d log c) of the best possible size c, as can be shown

as in [Cla93]. How large can c be? We have the fol-
lowing bound, which this subsection will prove.

Theorem 2.1 The optimal size c of L, is

0(1/c) (~-l JJ2dlog(p/c).

We’ll need the following lemma, due to

Dudley.[Dud74]

Lemma 2.2 Let P c Rd be compact and convex, and

contained in a ball of radius 1. For c with O < e <1,

there is a convex polytope P’ > P with 0(1/c)td-llj2

facets, and with P’ within Haussdorf distance E of P.

We’ll apply this lemma to bound the size of L,. To

do so, split W into slabs

Vi ~ {(z, ~) I di < v < di+l}j

fori= O.. .m, where fi s (1/2) min~es Ilbll, and

di = 3di_l/2, and m is large enough that ~ >

(2/cr) maxb~s Ilbll. We have m = log O(p/a). The
following lemma implies that only the points of these

slabs need be considered.

Lemma 2.3 Every halfspace ~C,b contains alJ points

of@ not in some Qi.

Proof We need to show that g ~ Z2 and either

y ~ dm or y ~ do imply %!C,bfor any b E S. since b. z

is maximized for given Ilzll when z = bllzll/l]bl[, when

showing that (z, y) 6 ‘h!~,b we can assume z = yb

for some -y. If Z2 > dm, the minimum valiie of g

to consider is Z2, sonlt’s enough to show that crzs ~

2b . z – b2, or cq2b2 > 2-yb2 – bz. This is implied

by ~ ~ (2/a). If Z2 ~ dm, then similarly we need

ay ~ 4b2/a z 2-yb2 – b2, which holds for y ~ 2/a.

When y ~ do, we have Z2 ~ y ~ b2/4, and so we need
azz ~ 2yb2 – b2, where y ~ 1/2. Since a.zz ~ O, the

result follows. Cl

Consider a given slab Vi. We have

5
~di ~ –~’di+l ,

4
(3)

for sufficiently small c. Consider the sets

7’= n{(z, y) I cr’di+, Z 2b ~Z - b’},
LIES

and

?b~fl{(~jy)l~di>2b.~-b2}. —
bEs

Then (considering only points in Vi)

P,/(s) c P“ c Pa c P,(s).

Moreover, condition (3) implies that there

between Pa and Pb that we’ll use shortly.

ball

B’ s {Z 1 Z2 < di+l},

is a gap

Now let

so that all points in Vi have z projections in B’, and

let

B - {Z I Z2 < (1+ 2~)2di+1}.

162

Let p; ~ {z I (z, y) c Pa}, and similarly define ‘P;.

Then P; n B’ c P: n 1?,and by (3), every point of

the former is at least

cidi+l/4

2\lbll

from any point not in the latter. If a plane ~et,h does

not contain ~i, and so is relevant here, then as in the

proof of Lemma 2.3, we have di+l ~ b2/4. This says

that gap between T; fm’ and Tjnll is proportional to

c~, and so by appropriate scaling we can apply
Lemma 2.2 to find a polytope p; such that

and PC has 0(1/e)td-1112 facets. This implies that

there is a polytope p’ in Rdtl of the same complexity,

such that relative to Qi,

PC,(S) c P“ c P,(s).

It not hard to show that there is a “coarsening” poly -
tope p,, (Lf), with at most d times as many facets as

P’, such that P, I(L\) n Wi c P,(S).

By putting the lists L$ together into L,, we obtain

the size bound of the theorem of this subsection.

2.3 Solving closest-point problems

How can a fast query time be obtained using the lists

L,? Just as with Arya and Mount’s work, a skip-

list approach is helpful. [Pug90] Choose a family of
subsets of S as follows: let R. ~ S; to obtain Rj+l

from Rj, pick each element of Rj to be in Rj + 1 with

probability 1/2. Repeat this process until an empty

R~ is obtained. If s E Rj but not Rl+l, say that s

hss level j. Construct the lists L, ,j for each Rj, and

so s c S has lists for each subset up to its level. To

answer a query, start with some s E Rh..- 1, and find

the ~-closest site t~_l in Rk_l using the lists L$,k _ 1.

Now find an c-closest site th -z in Rk _ z, starting with

t~_l. Repeat until to is found, and return to as an

c-closest site in S.

The correctness of this procedure should be

clear. How much time does it take? Since each

list is bounded in size by O(dc log c), where c is

0(1/c)(d-lJi2d log(p/c), the query time is equal to

O(dc log c) times the number of sites visited in the

procedure.

It is worthwhile to compare this procedure with
one that finds the closest site in R, at stage j, not

just the e-closest. Suppose we have tjas the c-closest

at some stage, but indeed a site t is closest in Rj.
When finding the e-closest in Rj +1, the approximate

procedure will in two steps find a site t’in Rj+l such

that d(g, t’) s d(q, t)/(1 + C’)2. (Here we assume that
the search in Rj +1 takes at least two steps.) Since

(1+ 6’)2 ~ (1+6) for c ~ O, we know that t’ is closer

to q than t, The number of sites visited at stage

j + 1 for the exact procedure is proportional to the

number of sites of Rj+l closer to q than t; hence the

number of sites visited for the approximate procedure

in Rj +1 is no more than 2 plus the number for the
exact procedure.

To analyze the exact search procedure, we can

follow Sen’s analysis of skip lists. [Sen] Look at the

search procedure “backwards”: starting at, the clos-

est site to q in Rj, visit sites in Rj in order of in-

creasing distance, until a site also in Rj +1 k encoun-

tered. Call this a level jump. Once the level jump

occurs, only sites in Rj +1 are visited. The proba-

bility of a level jump at a given visited node is 1/2.

Thus the probability that at least k level julmps occur

in v node visits is the probability that a binomially

distributed random variable has at least k successes

in v trials. The query time can be greater than V

only if either the number of level jumps exceeds K

or if fewer than K level jumps occur in V attempts;

the former probability is no more than n/2K, which

we’ll need less than some probability J’l. This im-

plies K ~ lg(n/P1). The probability of fewer than K

level jumps in V trials can be bounded using Cher-

noff bounds for the binomial; letting ~ z 2K/V,

it is exp(– V(l – 7)2/2). The probability that the

query time exceeds 2 lg(n/Pl)/-y for a given point q
is therefore at most PI + exp(– lg(n/P1)(l – y)2/~).

Hence, setting P1 = l/nQ, an O(Q) log n query time

is achievable with failure probability 0(1/nQ).

This analysis applies only to a single given point

q; what about arbitrary points? As with similar situ-

ations in randomized geometric algorithms, a good

query time holds for all points because there are

nolo(’) combinatorially distinct classes of pcjints. That

is, in an exact search algorithm, two points ql and

q2 will have the same sequence of visited sites, and

so the same query time, if the distance order on the

sites induced by the two points is the same. In other

words, whether we sort the sites in order of distance

from ql, or sort them in order of distance from q2,

we get the same sorted order. How many classes of

points are distinct in this way? Let B be the set

of ~) perpendicular bisector hyperplanes of pairs of
sites, and let A(B) be the subdivision of .Rd induced

by those bisectors. Then all points in one cell (block)

of A(B) induce the same distance orders, and so have
the same query time, The number of cells of A(B)

(“)is(~)<n ‘d. Thus a query time for any point of

163

O(log n) occurs with probability 1 – l/#(1). [Dud74]

Queries can be made a bit faster by splitting up

the each list L~ ,j into lists L: j, where the superscript

corresponds to the slabs ~i in j2.2. When searching

for a given site s at a given stage j, the list L~,j with

z’ = 2 lg d(s, q) can be used. This gives a query time [Pug90]

independent of p.

3 Concluding Remarks
[Sen]

[Vai89]
It should be possible to have an algorithm that is

polynomial in d, by making c a sufficiently large con-

stant, as in Bern’s note. [Ber93]

References [Yao82]

[AM93]

[AMN+94]

[AS90]

‘ [Ber93]

[Cla88]

[Cla93]

S. Arya and D. M. Mount. Approximate

nearest neighbor queries in fixed dimen-

sions. In Proc. ~ih ACM-SIAM Sym-

pos. Discrete Algorithms, pages 271-280,

1993.

S. Arya, D. M. Mount, N. S. Ne-

tanyahu, R. Silverman, and Angela Wu.

An optimal algorithm for approximate

nearest neighbor searching. In Proc.

5th ACM-SIAM Sympos. Discrete Algo-

rithms, 1994.

I. Adler and R. Shamir. A randomiza-

tion scheme for speeding up algorithms

for linear and convex quadratic program-

ming problems with a high constraints-

to-variables ratio. Technical Report 21-

90, Rutgers Univ., May 1990. To appear

in Math. Programming.

M. Bern. Approximate closest-point

queries in high dimensions. Inform. Pro-

cess. Lett., 45:95–99, 1993.

K. L. Clarkson. A Las Vegas algorithm for

linear programming when the dimension

is small. In Proc. 29th IEEE Symp. on

Foundations of Computer Science, pages
452-456, 1988. Revised version: Las Ve-
gas algorithms for linear and integer pro-

gramming when the dimension is small

(preprint).

K. L. Clarkson. Algorithms for polytope

covering and approximation. In Proc. tlrd

Workshop Algorithms Data Struct., Lec-
ture Notes in Computer Science, 1993.

R. M. Dudley. Metric entropy of some

classes of sets with differentiable bound-

aries. J. Approximation Theory, 10:227–

236, 1974.

W. Pugh. Skip lists: a probabilistic alter-

native to balanced trees. Comnaun. ACM,

35:668-676, 1990.

S. Sen, Some oberservations on skip lists.

P. M. Vaidya, A new algorithm for

minimizing convex functions over convex

sets. In Proc. 30th Annu. IEEE Sym-

pos. Found. Comput. Sci., pages 338-343,

1989.

A. C. Yao. On constructing minimum

spanning trees in k-dimensional spaces

and related problems. SIAM J, Comput.,

11:721-736, 1982.

164

